skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stone, Aidan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wrinkled graphene coatings are engineered to fulfill multiple functions desired for ultrathin gloves that prevent human exposure to chemical toxicants. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  2. Abstract Solid state lithium metal batteries using garnet solid electrolytes such as LLZTO (Li6.4La3Zr1.5Ta0.5O12) promise substantial improvements in energy density and safety. However, practical implementation is hindered by lithium dendrite penetration at high current densities. Recent work shows that internal electrochemically induced mechanical stresses are large enough to propagate lithium dendrites and subsequently fracture solid electrolytes. This study builds on this understanding and demonstrates that stress‐driven dendrite propagation can be controlled via deflection at weakly bonded internal interfaces. This approach, based on a fracture‐mechanics analysis of multilayered composites, is investigated with a variety of interlayer materials that are embedded into LLZTO. The viability and effectiveness of dendrite deflection are most clearly evident with reduced graphene oxide where the critical current density increased from 0.6 to 3.8 mA cm−2. In this material, both the weak interface with LLZTO and the mixed ionic–electronic conducting nature of the interlayer appear to contribute to the improved performance. Additional insight into the mechanics of multilayered electrolytes is also obtained with finite element modeling. The overall results present a promising proof‐of‐concept demonstration along with important generalized design guidelines for creating multilayered solid electrolyte architectures that can enable high‐performance solid‐state batteries. 
    more » « less